Recent Development in Automatic Parameter Tuning for Metaheuristics

نویسنده

  • F. Dobslaw
چکیده

Parameter tuning is an optimization problem with the objective of finding good static parameter settings before the execution of a metaheuristic on a problem at hand. The requirement of tuning multiple control parameters, combined with the stochastic nature of the algorithms, make parameter tuning a non-trivial problem. To make things worse, one parameter vector allowing the algorithm to solve all optimization problems to the best of its potential is verifiable non-existent, as can be inferred from the no free lunch theorem of optimization. Manual tuning can be conducted, with the drawback of being very time consuming and failure prone. Hence, means for automated parameter tuning are required. This paper serves as an overview about recent work within the field of automated parameter tuning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks

In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their s...

متن کامل

Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement

Finding appropriate values for the parameters of an algorithm is a challenging, important, and time consuming task. While typically parameters are tuned by hand, recent studies have shown that automatic tuning procedures can effectively handle this task and often find better parameter settings. F-Race has been proposed specifically for this purpose and it has proven to be very effective in a nu...

متن کامل

A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction

Two main concepts are established in the literature for the Parameter Setting Problem (PSP) of metaheuristics: Parameter Tuning Strategies (PTS) and Parameter Control Strategies (PCS). While PTS result in a fixed parameter setting for a set of problem instances, PCS are incorporated into the metaheuristic and adapt parameter values according to instance-specific performance feedback. The idea o...

متن کامل

Automatic Design of a Hybrid Iterated Local Search for the Multi-Mode Resource-Constrained Multi-Project Scheduling Problem

This paper details our submission to the MISTA 2013 challenge, which deals with the multi-mode resource-constrained multi-project scheduling problem (MRCMPSP). Kolisch and Hartmann [4] recommend metaheuristics as the best-performing methods when tackling the resource-constrained project scheduling problem with a single project and without multiple-modes. Most of these metaheuristics share many ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010